

Why Now?

Energy demand expected to double by 2050*

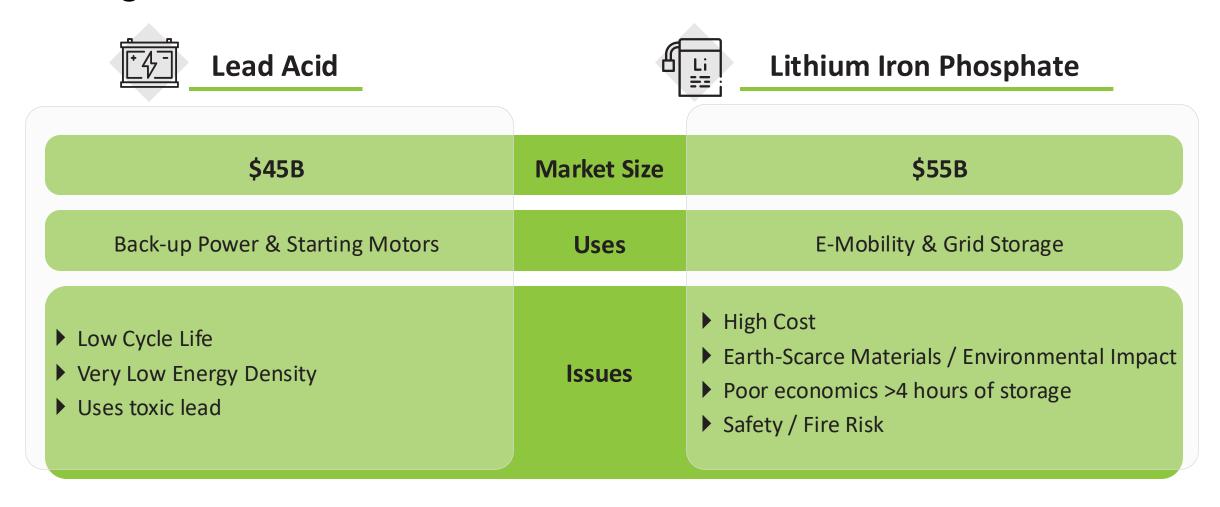
Per DOE lithium demand will outstrip supply by 2030**

Renewable energy supply is intermittent and requires more storage

New tariffs on imported batteries drive domestic demand

Energy demand is cyclical and requires storage to reduce costs

Current battery technologies are not up to the challenge

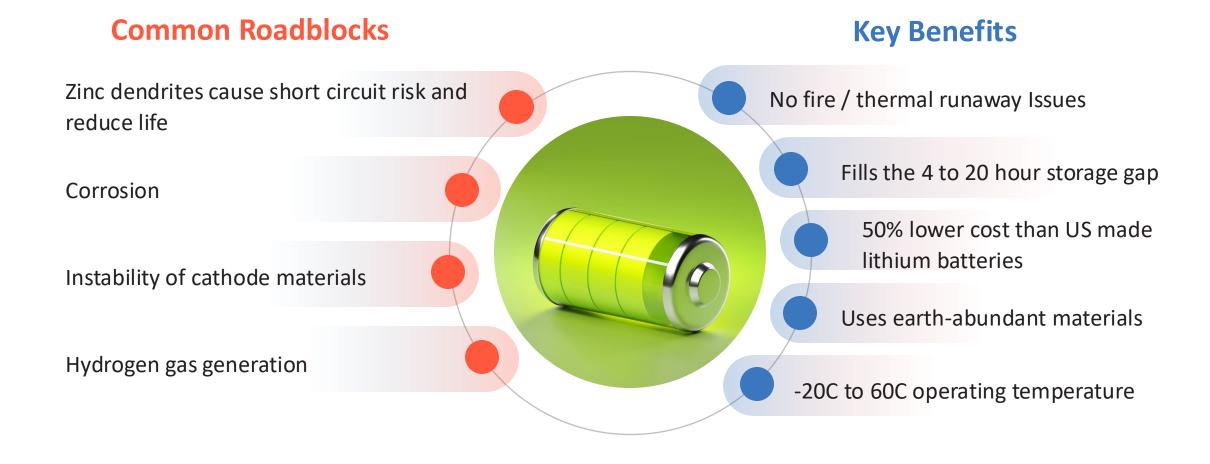

^{*}Energy Live News - 2024

^{**}Per Imre Guyk – Chief Scientist, Energy Storage Research, U.S. Dept. of Energy

CURRENT BATTERY MARKET IS RIPE FOR DISRUPTION

Lead acid and Lithium have significant issues and the addressable markets are large

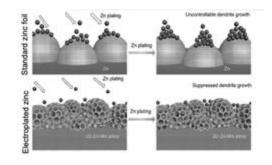
Last year in New York alone there were 175 lithium e-bike fires killing 14 people and injuring 96 others.

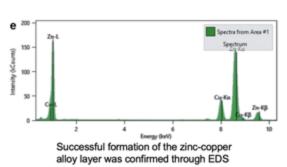


^{*}New York Times - 2023

OUR BREAKTHROUGH TECHNOLOGY – PATENT-PENDING

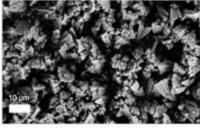
Rechargeable Zinc-Ion Batteries have huge benefits but not yet commercially realized

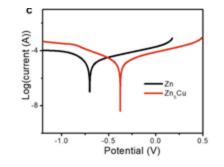

COULOMB TECHNOLOGY REMOVED THE ROADBLOCKS


Aqueous Zinc-Ion Batteries that meet or beat current technologies are now possible

Patent-Pending Technology

- ▶ Electroplated 3D anode solves dendrites & corrosion issues which increases battery life.
- Acidic operation which increases energy density.
- Specific cathode and electrolyte additives increases energy density & cycle life.

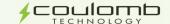

Morphology of anode inhibits dendrites & corrosion



SEM of a cross-section of electroplated Zn-Cu anode

SEM of the surface of electroplated Zn-Cu anode

A shift to the right to more positive corrosion potentials of Zn-Cu compared to Zn reflects <u>less</u> corrosive tendencies of Zn₅Cu



COMPETITION: Patent-pending solution solves problems that others can't

Туре	Energy Density	Safe?	Earth- Abundant?	Cycle Life	RTE	Self-Discharge	Cell Cost
<u>LFP</u> – CATL, BYD, etc	180 Wh/kg	No	No	3k+	90%+	0.07%/day	\$55/kWh*
<u>Na-Ion</u> – Natron, CATL, Faradion, etc	70 to 140Wh/kg	No	Yes	3k+	88%+	0.07%/day	>\$80/kWh
<u>Ni-Zn</u> – Zinc5, ZAF	60 Wh/kg	Yes	Yes	800	80%	0.1%/day	>\$150/kWh
<u>Zi-Mn</u> – UEP, Salient	100 Wh/kg	Yes	Yes	1k	86%	0.01%/day	\$100/kWh
Zn-Br - EOS	35 Wh/kg	No	Yes	5k+	80%	2%/day	\$160/kWh
Zn-Air – E-Zinc	50 Wh/kg	Yes	Yes	800	55%	0.07%/day	>\$100/kWh
COULOMB	140 Wh/kg	Yes	Yes	2k+	86%	0.01%/day	<\$50/kWh

HUGE POTENTIAL WITH \$100B TAM / \$1B SOM

Key Markets

E-Mobility

Replace Lead-Acid in SLI (Starting, Lighting, and Ignition) - \$45B

Replace LFP in E-Bikes, Scooters, Golf Carts, Marine, etc - \$12B

Grid, Residential, Commercial, & Industrial - \$43B

Source:

- Lead acid https://straitsresearch.com/report/lead-acid-batterymarket#:~:text=Market%20Overview,USD%2048.3%20billion%20in%202022.
- E-mobility https://www.mordorintelligence.com/industry-reports/e-bike-battery-pack-market/market-size
- Stationary Storage- https://www.insightaceanalytic.com/report/stationary-energy-storage-market/1668#:~:text=The%20Global%20Stationary%20Energy%20Storage,forecast%20period%20for%202024%2D2 031.

Key Drivers of Future Value

Different size batteries address multiple market segments

Profitability ~20% EBITDA margins

Gov. aid to support ramp-up

- \$35/kWh Production subsidies
- ~70% factory CapEx via low-cost gov.
 loan

STRATEGIC PARTNERS

Our Development Partners

ORNL battery team with Ilias and Parans through the Innovation Crossroads program

\$400k of funding over 2 years, starting Aug 12, 2024 Approved to put two Coulomb scientists in ORNL Battery Lab starting ~ mid Sept, 2024.

New Jersey Lab in collaboration with **NEI** corporation

\$40k use their SEM, XRD, etc to provide nanoscale images and material properties.

Cradle to Commerce (C2C) program

\$50k of funding over 1 year, starting Sep 13, 2024

Modeling with Columbia University – Alan West's group

Manufacturing **Partnerships**

Working with NREL to develop a good proposal for grant 40209

Co-Development partnerships in place

PILOT CUSTOMERS

Status - These customers are waiting for samples to test which are expected early 2025.

LOI's – We have LOI's signed with this customer

INVERGY To replace LFP batteries in their portable and residential power stations

Go-to-market plan – We will utilize a direct B2B sales model, channel partners, and eventually retail.

BUSINESS MODEL

Goal

To reduce our costs, reduce ownership of factories, material, etc.

To provide great customer service

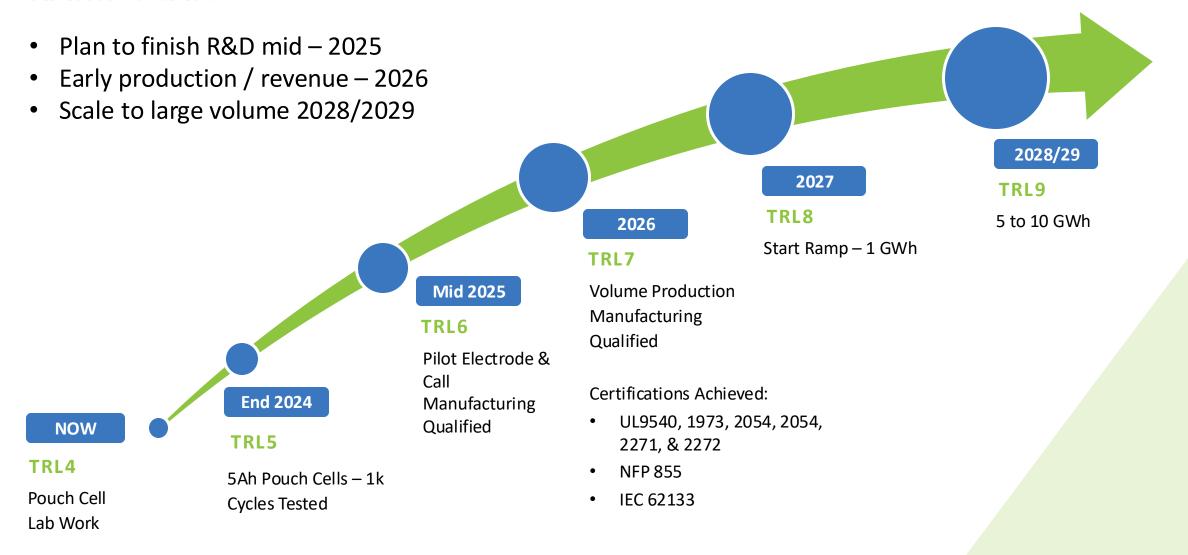
Own the customer for life

<u>How</u>

- Own no factories and use contract manufacturers.
- Work with supplier to retrofit existing lithium-ion and lead-acid factories to build our batteries.
- Offer drop-in replacements with no modification needed by customer
 - Provide a subscription or rental model to solar installers, etc.
- Offer battery replacements and recycling as a service. Use a franchise model that is set up by region.

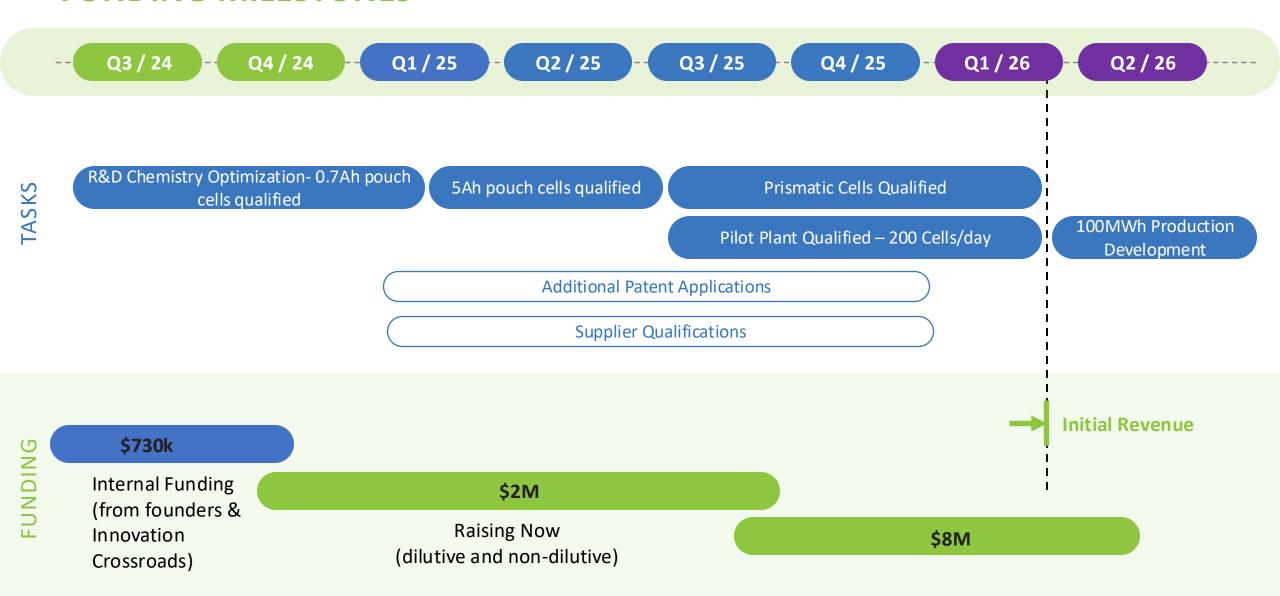
Two Revenue Streams

20%


License our Technology

80%

Merchandising



RAMP PLAN

FUNDING MILESTONES

Our Lab Qualifies for New Jersey New Business Incentives (Available to any investor located anywhere world-wide)

Angel Tax Credit Program –

Any investor eligible for 20% tax credit up to \$500k per investor.

Innovation Evergreen Fund –

Match up to \$6.25M if VC join program

SBIR Grant Match –

Up to \$25k

Investment Insurance –

Guaranteed payment up to 80% of investment to max \$400k for 1 year

Net Operating Loss Offset –

Start-up can sell **10% of losses** per year

LEADERSHIP TEAM

Combined 71 Years of Energy / Battery Experience

Tim Vosburgh

Founder & CEO - MBA

 $30\ years\ exp$ - high volume contract mfg / semi equipment 2^{nd} battery startup

Matthew Kim

PhD - Scientist

6 years of MnO2 battery development experience

Thanh Le

Sr. Scientist

PhD Battery Chemistry and DFT modeling, acidic zinc-MnO2 chemistry

Xiaoran Yang

PhD – Scientist

5 years of battery development experience.

Stefanie Goldman

PhD – Consulting Scientist

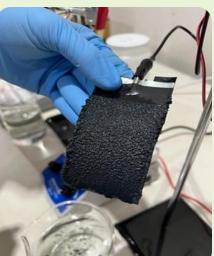
14+ years of zinc battery development experience. Successful zinc battery exit

Amir Chamaani

PhD - Scientist

7 years in battery development, including aqueous MnO2

OUR LAB



SUMMARY

Aqueous Zinc-Ion Rechargeable Battery Technology

Enormous market (\$100B TAM, \$1B SOM) ripe for disruption.

Experienced & committed development team & development partners.

Breakthrough, patent-pending technology.

Balance sheet light business model.

Raising \$2M to finish R&D and start prismatic cell development.

TECHNOLOGY

Contact for Additional Information:

Tim Vosburgh

Founder & CEO Tim@coulombtechnology.com 208-768-8888

Christine Martini

Investor Relations
Christine@coulombtechnology.com
917-570-7024

Backup

KEY ADVISORS & 2 MORE TEAM MEMBERS

Corporate Fellow

Head of Electrification Section Distinguished scientists 24 years science research

Parans Paranthaman

Corporate Fellow

Fellow National Academy of Inventors & Materials Research Society
39 years science research

Sanja Tepavcevik

Chemistry Scientist

23 years science research Acidic zinc-MnO2 patent

Kevin Huang

Professor Electrochemistry

19 years science research Acidic zinc-MnO2 development

Nathan Neisius

Sr. Scientist

PhD Inorganic chemistry, recent grad, battery research

Confidential

Sr. Cell Engineer

45 years in aqueous zinc battery development.

Successful zinc battery exit

BUSINESS MODEL CANVAS – E-MOBILITY MARKET

8. Key Partners

- Grant and Investor partners so we can hire more scientists
- low-cost lab partnerships to finish our development
- pilot manufacturing partners to make our initial 20Ah cells
- Close with early adopters. / teacher customer

7. Key Activities

- Perform R&D Customer samples with 5Ah pouch cell at 150Wh/kg and 200 cycles
- Perform customer evaluation
- Developing manufacturing partnerships

6. Key Resources

Battery development lab, scientists, raw material, pilot manufacturing

Outsource model - 10 GWh factory utilizing existing LFP and Lead-acid equipment

2.Value Propositions

- We are replacing lead-acid and LFP (lithium) batteries with safer, lower-cost (50% less), earth-abundant zinc-ion batteries
- Our long- term goal is \$25/kWh where our zinc competitors are >\$100/kWh now.
- Drop in replacement
- Be the battery provider for life
- lower LCOS via less up- front costs, less thermal management equipment, and lower insurance costs.

4. Customer Relationships

- Develop deep direct relationships with each targeted customer
- Build trust and maintain excellent customer support

3. Key Channels

- Pilot development plan w/ OEMs
- Direct sales with OEM's as each customer we are targeting is very high volume.
- Distribution and retail like, tractor supply store, powersport stores, county co-ops, etc

1. Customer Segments

E-mobility customers

- Golf carts Club car, EZGo, Yamaha, AMC, Garia, Polaris, Cushman
- Bass Boats Skeeter & Triton, Bass Pro Shop / Cabellas
- Mining CAT, Joy Mfg
- Powersport Companies Honda, Yamaha, Polaris, BRP, Kawasaki

Decision makers:

- Start w engineers
- Then procurement and supply chain
- Then CTO
- Channel partners
- Retail partners

9. Cost structure

- R&D costs
- Contract Manufacturers
- Material
- SG&A
- 15% net margin goal (includes 48C tax rebate)

5. Revenue Streams

We have a direct sales and channel partner model. Additional revenue from subscription. We expect recurring orders from our customers

BUSINESS MODEL CANVAS – ENERGY STORAGE MARKET

8. Key Partners

- Grant and Investor partners so we can hire more scientists
- low-cost lab partnerships to finish our development
- pilot manufacturing partners to make our initial 20Ah cells
- Close with early adopters. / teacher customer

7. Key Activities

- Perform R&D Customer samples with 5Ah pouch cell at 150Wh/kg and 200 cycles
- Perform customer evaluation
- Developing manufacturing partnerships

6. Key Resources

Battery development lab, scientists, raw material, pilot manufacturing

Outsource model - 10 GWh factory utilizing existing LFP and Lead-acid equipment

2.Value Propositions

- We are replacing lead-acid and LFP (lithium) batteries with safer, lower-cost (50% less), earth-abundant zinc-ion batteries
- Our long- term goal is \$25/kWh where our zinc competitors are >\$100/kWh now.
- Drop in replacement
- Be the battery provider for life
- lower LCOS via less up- front costs, less thermal management equipment, and lower insurance costs.

4. Customer Relationships

- Develop deep direct relationships with each targeted customer
- Build trust and maintain excellent customer support

3. Key Channels

- Pilot development plan w/ OEMs
- Direct sales with OEM's as each customer we are targeting is very high volume.

1. Customer Segments

Energy Storage customers

- Energy providers
- System integrators
- Solar Installers
- Retail and channels

Decision makers:

- · Start w engineers
- Then procurement and supply chain
- Then CTO

9. Cost structure

- R&D costs
- Contract Manufacturers
- Material
- SG&A
- 15% net margin goal (includes 48C tax rebate)

5. Revenue Streams

We have a direct sales and channel partner model. Additional revenue from subscription. We expect recurring orders from our customers